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SUMMARY

This report extends the results of Vinti and Izsak and pre-

sents a'computational procedure designed specifically for Izsak's

second-order solution of Vinti's dynamical problem. With this

procedure, the coordinates and velocity of an unretarded satellite

can be obtained from a knowledge of its initial conditions r and v.

In this procedure, the derivation is given for the complete

set of six canonical constants from initial conditions. Three of

these have been determined by Vinti and the remaining three by

the author. All six of them are assumed known in Izsak's solution.

This report includes an adaption of a Newton-Raphson itera-

tion scheme specifically designed to solve a certain system of

nonlinear equations introduced by Vinti for the purpose of numer-

ically factoring a certain quartic equation. The solution by this

method can be used instead of certain infinite series to obtain

Izsak's elements a and e. An example is included to illustrate

how these elements may be obtained by the Newton-Raphson

method.

Appendix B gives the derivation of exact expressions for the

components of velocity in Vinti's accurate intermediary satellite

orbit using Izsak's orbital elements. The derivation is one of the

necessary steps in comparing such a method with others.
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A SATELLITEORBITCOMPUTATIONPROGRAM
FORIZSAK'S SECOND-ORDERSOLUTIONOF

VINTI'S DYNAMICALPROBLEM

by

Raymond V. Borchers

Goddard Space Flight Center

INTRODUCTION

This report provides a computational procedure for determining the orbit of an arti-

ficial satellite in the earth's gravitational field. The procedure is based on Izsak's second-

order solution of Vinti's dynamical problem (Reference 1). This computing procedure

differs from many other methods in that the potential function is included in an analytic

solution of the equations of motion. This is advantageous because the difficulties associ-

ated with the slow convergence or divergence of some series expansions used in orbit cal-

culations are avoided; also the problem of small divisors is avoided. Another advantage

of this procedure is that it does not involve several multiplications of Fourier series, a

task common to certain satellite programs. Although Fourier series are well adapted to

numerical computation, it is certainly desirable from the standpoint of machine storage

and computing time to minimize the total number of such series. In many satellite theories,

Fourier series are used from the very beginning to obtain successive approximations of

different orders to the solution. The use of Vinti's potential minimizes the use of pertur-

bation theory; Izsak (Reference 1) states that the oblateness perturbations which are not

accounted for by Vinti's potential can be treated by a first-order method, that is, without

multiplications of Fourier series.

As was pointed out by Izsak (Reference 2) it is advantageous for several practical

purposes to have satellite orbits with very small eccentricities. Since the eccentricity

never appears as a divisor, this procedure is valid for arbitrarily small values of c or

e = 0. However, we must avoid polar orbits and orbits which have inclinations of less than

2 degrees.

Vinti (Reference 3) found an axially symmetric solution of Laplace's equation in oblate

spheroidal coordinates which may be used as the gravitational potential about an oblate

planet. This potential, which leads to separability of the Hamilton-Jacobi equation, is a
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remarkableapproximationto theactualgravitationalfield of theearth in that it fits the
zerothandsecondzonalharmonicsexactlyandaccountsfor overhalf of thefourthzonal
harmonic. Naturally, theoblatenessperturbationsare onlya part of thefactors which
affect thesatellite motion. Otherperturbationsnotaccountedfor in this procedureare
the effectsof theoddharmonics,the residualfourthharmonic,the lunar-solar forces,
andaerodynamicandelectromagneticdrag.

MATHEMATICALPROBLEM

In Hamiltonian form, the equations of motion of a dynamical system of n degrees of

freedom assume the forms

dPi OH

dqi OH
)

dt - 0p i

where H(q I , q2' "" "' qn; Pl' P2 ' "" "' Pn; t) is the Hamiltonian function (in which time ap-

pears explicitly) of the system with n generalized coordinates qt, q_, "'" ' % and the con-

jugate momenta Pl, P2, " " ", Pn •

Solving the Hamilton-Jacobi equation

O_ (q O_ OW o_)0t ÷ H 1' q2' "" '' qn; Oq 1 ' 0q 2 ' "'', 0q n = 0,

where _ is Hamilton's characteristic function, is equivalent to solving the Hamiltonian

equations of motion (Equation 1). If it is possible to separate the variables in the Hamilton-

Jacobi equation, then the solution can always be reduced to quadratures.

Vinti's dynamical system belongs to a class of systems which are scleronomic, con-

servative, and holonomic. Furthermore, it belongs to a class of dynamical systems which

are said to be of Stfickel's type. The separability properties of the Hamilton-Jacobi equa-

tion of the form solved by Vinti follow from certain conditions determined by St_ickel. The

separability of the variables occurs only in certain coordinate systems.
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The oblate spheroidal coordinate system is related to the geocentric rectangular co-

ordinate system by

x = ]/(p2 + c2)}/i- _2 cos a,

y = }/'_+¢_]/i--,_2 slnc_,

where x, y, and z are rectangular coordinates; r is the geocentric distance of the satellite;

p, _, and _ are the coordinates in the oblate spheroidal system; and c is a constant defined

by Vinti's expression

c2 = J2a_ . (2)

where J_ is the coefficient of the second-degree Legendre polynomial in the earth's force

function F. The quantity F is expressed as

T - J. Pn ( sin _ ) ,

n=I

where _ is declination of the satellite, a E is the earth's equatorial radius, and p is the

product GM where G is the gravitational constant and M is the earth's mass.

The potential which Vinti obtained in oblate spheroidal coordinates is

_P
= _

/9 2 + c2dr 2

Similarly, the Hamiltonian and Lagrangian are

1 U2 _p
H = _- p2 + c2cr2 '

1 U= _p
L = 2 + p2 + C2O-2 '
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where the speed of the satellite U is found from

C 2 _ p2 + C2O_2 _2 +

p2 + C 2

+ + .
1 - _2

The generalized momenta are defined by

0L

Pp _-

3L

8L
P= - O& '

The Hamiltonian does not contain the time explicitly, so the Hamilton-Jacobi equation

is

1_ I(p _ _'_[0_'_2 (1 2_[0_]_2 ( 1 c 2 _[OW_ #p =_1 - a 2 p2 + + '

where, in the limit as c 2 _0of Keplerian motion, fi is the total energy in the orbit; fi is

always negative.

The implicit equations of motion for the determination of p, a, and _ are (Reference 1)

OW fp_ p2 clp fj cr2 dcroT_ : PfF-_ + __ _I _t : t - _ ,
1

OW t'; dp + _ . do-

Pi

1

do-
4- o. = _ ,



where

(3)J:

The symbols _, _, _, - _, £_, and _ are a canonical set of constants of integration. In the

limit as c 2 _ 0 of Keplerian motion, the canonical constants have the following meanings:

total energy in the orbit, f_ is always negative;

total angular momentum;

z component of the angular momentum, G is positive or negative according as

the motion is direct or retrograde;

- _ time of perigee passage;

argument of perigee; and

right ascension of the ascending node.

Exact expressions for three canonical constants a_, a2, and %, denoted by Izsak as

_, _, and 5, respectively, are determined from initial values of the coordinates and their

derivatives (Reference 4). Numerical values of these a's are used to determine a certain

set of orbital constants Co, %, and i 0 (the initial values of the semimajor axis of the orbit,

the eccentricity o[ the orbit, and the angle of inclination, respectively). These are used to

find the ;_, P2, A, and B (the perigee of the orbit, the apogee of the orbit_and coefficients

in the quartic polynomial F(;) -- see Appendix B -- respectively) necessary to factor

F(;) = - 2% (;-;,)(p,-Z)(;2*A;+I_) , (4)

where p_ = a( 1 - e) and ;2 = a( 1 + e). Similarly, this same quartic designated by Izsak as

P(;), Equation 3, can be factored into a form which is equivalent to that of F(p), Equation 4.

That is,

p(p) = -2h (p2-p)(p-pl ) [(p-aK) 2 +a 2h-2]

and we find that

;2 + A; + B = (p-aK) 2 + a 2X 2.



The values for p, + P2 , PiP2 , A, and B are determined initially by solving the follow-

ing system of nonlinear equations:

-!

Pl + P2 - A = -_a I = 2a o ,

l _ C2 + a0 P0 ,

Pl + P2) B - Pl P2 A = -_al-lC2 = 2a o c 2 ,

pip2 B = --_c 2 a_ -a all = a0P0C2 sin2 io .

Vinti (Reference 4) has given a second-order solution of this system by a method of

successive approximations. However, if higher order accuracy is desired, it is first

necessary to obtain additional terms in the series solutions; this is a laborious task. A

numerical method to obtain the solution is given in the next section.

NEWTON-RAPHSONITERATION SCHEME

The solution of a set of nonlinear algebraic equations usually involves a great deal

more work than that needed for linear systems. When n, the number of equations, is large,

the solution of linear systems entails considerable computation time even on high-speed

computers; the solution of nonlinear systems may often be almost prohibitive.

The Newton-Raphson method (References 5, 6, and 7) can easily be applied when a

solution is required for only a few equations.

To solve a system of nonlinear equations such as

Pl + P2) - A = 2a 0 , (5)

B + Pl P2 - (Pl + P2) A = c2 + aoPo '

Pl + P2) B - p, P2 A = 2a o c 2 ,

(6)

(7)

Pl P2 B = aoP0 c2 sin2 io ' (8)



with unknowns (p, + P2) ' P,P2' A, and B by the Newton-Raphson iteration we begin with a

trial vector

X

x(k+l) = x(k) - J-I F(X(k)) ,

x2 P P2 = 0 Po /

:..: ? oO/
x 4

(9)

Denoting Equations 5, 6, 7, and 8 by fl, f2, f3' and f4, respectively, that is,

f, (x,, x_, x3, x,) : (p, +p_)- A- 2_o,

f,O,,x_,x,,x,): B+;,:__ (;,+;_)A-c'-_o,o,

f,(,,,x_,x,, x,)--(:,+p,)R- :,:_A- _=o:,

f4(xl, x 2, x 3, x4) = ,olp 2 B - aoPoC2Sln2 i 0 ,

we introduce the usual Jacobian matrix

0 (fl' f2' f3' f,))J _ a (x,, x_, x3, x,)

l 0 -1 1

-A , -(;, +:_) i

-A -Pl P2 Pl +p

B 0 Pl P2]

It will be noted that for the initial vector, the Jacobian determinant can be written

(lO)

Isl

1

0

0

0

0 -1 0

1 -2a 0 1

0 -ao Po 2ao

0 0 ao Po

:

The condition that fJ1 is not close to zero will be satisfied provided e 0 is not close to

unity.



Next,wedeterminethe exactreverseof Equationi0; onlythefinal result is given
here:

j-I = Z21 z22 Z23 Z24 ,

Z31 Z32 Za3 Z34

41 Z42 Z43 Z4

where

(A+;I

¢1 P2 - B
Z13 - £

A + Pl + P2

Z14 = A '

Z21 = A -

Z22

Z23

Z24

Z31

Z32

Z33

Z34

+_I+",)(_-A')-_(_+;i+:,)'+_[(:i:,-_)+A(A+:I+;2)]}A

-- I - A '

(;,p2)(A*;I+:2)
(PIP2) Z14 -

-(A+;,+_)2+(_1p2-B)+A(A+;I+;2)
A

= (Zll_l)=_ I(plp2-B)(B-A2) BA(A+Pl +P2) 1

= Z12 A '

(Pt P2- B)

ZI3 - A

Z14 - A
- (A+pl +/02)

B_(/_I +P2) + BA(PlP2)
Z41 = BZ32 A '



B(Pl P2 -B )

Z42 = BZl3 - A '

-B(A+Pl +P2)

Z4 3 = BZ3 4 = A

Z4 4 ---- -- Z3 3 4- AZ34

where

A =

(p,p_-B)+A(,+p,+P')IA

[(_,p,-8)' +A(p,p,-B)(A+;,+ p_)+_(,,+;,+P,)']

The Newton-Raphson iteration can now be written

X2(k+l : x2(k

x3(k+l X3(k

X4(k+l X4(k

(zl,z,2z13/Z21 Z22 Z23 Z24 f2

Z31 Z32 Z33 Z34 f3

Z4t Z4_ Z43 Z44/\f4/

A solution will have been obtained when

Max(xi(k+l)i - xi(k))I <
E

where e is any tolerance sufficiently small to obtain the degree of accuracy desired.

The first-order solution through k 0 is obtained in one iteration by beginning with the

zero-order solution of Equation 9. It is expected that four iterations will be sufficient to

obtain the solution through O(k03).

Table 1 gives the solution to the system as computed on the IBM 7090 using a single

precision floating point Fortran program. The solution of Equations 5 through 8 was ob-

tained accurately to seven significant digits in four iterations with e = 10 -_.

The initial values of the unknowns, together with other necessary constants were com-

puted from orbital data of Explorer XI (1961 _).
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Table I

Numerical Results Obtained with the Initial Conditions

Pi + P2 = 2ao = 15.0588664,

Iteration

Number

1

2

3

4

Pl + ;°2

15,0497347

15.0497213

15,0497213

15.0497213

PlPs = ao Po = .56.2660106,

A -- 0.0,

B = 0.0,

c2 = .]_,a_ = 0.044029034,

sin i o = 0.474484778,

= 1.0 x i0-7.

PIPs

56.1626263

56.1624885

56.1624877

56.1624877

-0.00913084351

-0.00914439194

-0.00914439194

-0.00914439209

B

+0.00991251186

+0.00993078329

+0.00993078336

+0.00993078336

We immediately obtain the values of the elements a and e from

Pt +P2
o 2 '

_1 4Pt P2e = (Pl + P2) 2

DETERMINATIONOF CANONICALCONSTANTSFROM

INITIAL CONDITIONS

If the initial conditions (denoted by zero subscripts) to, xo, Yo, Zo, 50, Yo, and ;o are

known, we can determine a complete set of canonical constants a, e, S,-t',_, and o_essen-

tialto Izsak's second-order solution. The canonical constants have the following meanings:

a semimajor axis of the orbit,

e eccentricity of the orbit,

s sine of the inclinationof the orbit,

- t in the limit as c2_ 0 of Keplerian motion - { is the time of perigee passage,

in the limit as c2_ o of Keplerian motion _ is the right ascension of the ascending

node,

o_ a constant of integration.



We first give the method of determining a, e, and S. The following expressions are

computed:

r: : x: _yj +Zo_

11

p_

+ _o_ ,

(11)

ro;o = Xoko + Yo§o + Zo£o '

PO

Po ro /o + cUeo _o

po_ + :o:

_0

-_oro;o + Polo

where a o takes the sign of z o. Next, the following expressions are computed:

1 #PO

O-l : _'V 2 - _F: 0)/": .i. C20-2 , (Z l <: 0 ,

a3 : Xo_7o - Yoko '

=_ + (-%_o;o +:o_o)
- 2a I c2 0-2 ,

y2

_3 2

- COS2 i 0 ,

]/_ - y2 : sini o ,
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Po = --# '

c 2

Ko -
po2'

Pl P2

Pl + P2 = 2PoX-211 - Kox2Y2 - Ko2x2Y2 ( 2x2 - 3x2y 2 - 4 + 8y 2) + .-.] ,

Po2x-2[1 + KoY_ (x2-4) - Ko2Y2(12x 2 - x 4 - 20x2y 2 - 16 + 32y 2 + x4y 2) + ...] ,

1

a = 7 (P1 +p2) '

4Pl P2

I - e 2 - (12)

77O

_ (;_-;,)
Pi + P2

- ¢i- (i-o')

[ i I ]= (sinio) 1 -SKox2Y 2 +-_-Ko2x4y2 (7y2-,) + ... ,

where no -_ sin I = S. Alternately Vo may be computed from

_o _ E
We now have determined Izsak's elements a, e, and S from initial conditions; these

elements are accurate through O(ko2 ) and are used as input to the orbit computation

procedure.

We are now ready to determine the remaining canonical constants - _, _, and _. We

set ¢ = E = 0 whenever c = 0. If e / 0, we determineE from

f P orol'o + c2_0_z0 I 'E = taft I _ _p [-aK) 2 + a2hfl (a-Po)



13

since

a - P0
cos E =

ae

Po ro _o + C2_o _o
sin E =

ae _]/'_'- ¢(p--aK)2 + a2,k.2

where p0_ is given by Equation 11, c is given by Equation 2, and

a2A2 = a 2 2S2 (1_e2)2 (l-S2) (1-5S2) + .... (13)

_(1 - 4S _ - e 2v2(1-S2) + ) + ....
t - _ (] -e_) (14)

iL£

-21_ - a(l+K)" (15)

The angle ¢ is completely determined by

cos ¢
cos E - e,

1 - e, cos E ' (16)

sip ¢

- e, 2 sin E

1 - e, cos E (1'7)

where e. is given by

e, = e 1 + (I-2S 2) + - - "
1 -- e 2 (1-;2)3 [(3-16S 2+ 14S1) 2(1 S') 2 e'] + "" (18)

We next determine the angle ¢ from

_o

sin ¢ = y , S / 0 ' (19)

COS _

-%ro;o + Poio

us ]/1 - £ 2 sin 2 _b

(20)
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where (I - e 2) is given by Equation 12 and

w2 $2
12 -

1 - e 2
4w4 82 .

_{I-S 2) + ...

K2 + _2

w2
= S _ + 4_2S 2 4v4S2

+ - +...

Next we compute a "mean anomaly" _ from

= E - K{esin E - K2¢- K3sin¢ + K4sin2¢ + Ks¢ _ K6sin2¢ + KTsin4_b ,

where

(21)

(22)

K! = 1

K 2

i - o= (1- o,)_ (3+_')

2(l-e} S" 16 (1 _ e2j3- L(24 _ 96s2 + 78s, )

13 --_,- 512/12

- (=-1,1,112o_]

3_ 4 _1 - e 2 14 _2
K 4 = 32(1-e2)3

=5

=6

Z_4 _ - e 2
K7 - S 4

64(1 - e2) 2 "

We can now compute - _ as follows:

-t" =---t,

(23)

(24)

(25)

(26)

(27)

(28)

(29)



where

3v2 (1 -S 2 )

= , a- - 2(1,- e 2)

3v4 (1 -S _)
+ 8(1_e2) 3 [(I+llS 2) -(1-5S2)e 2] .... t °

15

(30)

The right ascension Of the satellite a is determined from

X o

COS _ = _ J

sina
YO

¢;: +c2

When the right ascension a is known, the r'ight ascension of the ascending node _ is

computed from

: a - taft' (1/1--S 2 tan_b) +RiCh - R 2 sin2¢ + R3¢

+ R4 sine + Rs sin2¢ - Rnsin3¢ - R7 sin4¢ ,

where

_2 )q- - S 2 v4 }/_ - S 2 [(30_35S2) + (2+ 3S2) e z] (31)
R l - 2(1_e2 ) 16(1 -e2) 3

3_ 4 1/1 - $2

- S2 (32)R_ 32(1 -e_)_ '

_ _2¢_ - S2 .4 ¢_- S2

+ - - + +16(i_e2) , [(24 56S2) (4 64S2)e 2 - (2 3S2)e '] '(33)

I-2v2 _ - S2 v4 _ - S2 lR 4 : _l_e]) _ + 4(l_e_ _ [(4-28S 2) -(6+7S_) e 2] e , (34)

Rs = 4(1_e2)2 8(1:e_)" _- [11 + (1 +S2)e 2 e 2 , (35)
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_ _ff - s 2

R_ - -4(i-d)' (2-S2)e3 ' (36)

v 4 lfi-_ 82

R, =r,-_2_(2+s2) o' (3'/)
u"t_l J-

We next compute w and v, which are analogous to the argument of latitude in Keplerian

motion and the true anomaly in Keplerian motion, respectively, from

and

where

w : ¢ - M] sin 2¢ + 3M2sin4¢,

V : _ + L, sin 2¢ + L 2sin4¢ , (38)

M1 : _ 1+

_4

M2 - 256

Ll - 8 +2- '

3k 4
L2 - 256

The mean argument of perigee _ is given by

: W-V .

The constant of integration _ is given by

o_ = W - (1 +e)V ,

where

E

V2

4(1-e2) 2(12-15S 2) +
v4 [(288 - 1296S 2 + I035S4)

-(1.+  lO ')eq+""
(39)
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ORBIT COMPUTATIONPROCEDURE

With the exception of the velocity formulation, the computational procedure developed

here makes use of the unmodified expressions of Izsak (Reference 1).

Input

The 11 inputs are: a, e,S,-_,_,_c, J2' aE'_' At, and Tf. The six inputsa, e, S,-{,

D, and _ are constants of integration (see definitions on page 10). The other inputs have

the following meanings:

J2 the coefficient of the second-degree Legendre polynomial in the earth's gravita-

tional potential,

a E the earth's equatorial radius,

the product (_ where G is the gravitational constant and M is the earth's mass,

At time interval of integration,

Tf final time.

The following values of _, J2, and a E determined by W. M. Kaula (Reference 8) were

used in the computations:

= 3.986032 × 10 _ megameters 3 ksec-2,

J2 =1'0823× 10 -3

ae -- 6.378165 megameters.

Equations and Fundamental Constants

From Vinti's expression (Equation 2) and the input constants determined by Kaula, we

have c = 0.20983097 megameters. In addition to a_;_ 2 (Equation 13), K (Equation 14), - 2h

(Equation 15), cos¢ (Equation 16), sine (Equation 17), e. (Equation 18), _ _ (Equation 21),

(K2 + ;_2)/::_2 (Equation 22), 8 (Equation 30), V (Equation 38), and e (Equation 39), the follow-

ing equations are used in the computation:

c 2
zj2 _-- ___

a2 '

y2 e 2
k s - S 2

(1 - e2) 2

v4 e 2

(1 • s. * ....
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and the generalized Kepler equation

E - KlesinE = _(t-_) + Ka¢ + K3 sine - K4sin2¢ - Ks¢ + Kssin2¢ - K7

where the K_ are given by Equations 23 through 29.

The right ascension a is computed from

a = _ + tan-' (1/1 - S 2 tan¢) - RI¢ + R 2 sin2_b - R3¢ - R 4 sine

sin 4¢ , (40)

- R 5 sin 2¢ + R 6 sin3¢ + R 7 sin4¢ ,

where the Ri are given by Equations 31 through 37.

The argument of latitude ¢ is computed from the following equations:

w = (l+e)v+ oJ ,

_b = W + M1 sin2W + M2 sin4W + "'"

The mean argument of perigee _ is computed from

The anomalistic mean motion n¢ is computed from

a.* ¢]-- oa t

The motion of the node _ is computed from

3.2 f-_ _ S a

V 2(1 - e2) a

-- 3u 4 fT - S:

L"

The oblate spheroidal coordinate a is computed from

= s sin ¢ .
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The z component of the angular momentum _ is computed from

_2 -_ -2_a2(1-s2) (1_o2) i _2s21 _ "

The oblate-spheroidal coordinate f is computed from

p = a(l-ecosE) .

Initiallyfor t --to we start with values ¢ and ¢ determined from Equations 16, 17, 19,

and 20 to solve the generalized Kepler equation given by Equation 40 using a Newton-

Raphson iteration scheme. We test IE(¢i+i, ¢i+i) -E(¢i, ¢i) I< E,wherec > 0 was chosen

to be 10 -7. In general, only two or three iterations are required before sufficientlyac-

curate values of E, ¢, and ¢ axe obtained. The oblate-spheroidal coordinates p, a, and a

are then computed; p, a, and _ are then used to calculate x, y,and z.

OUTPUT

This program generates position and velocity for equally spaced intervals of time.

Oblate-spheroidal coordinates are defined by the equations

y = _p2 + c 2 lrl - or2 sina ,

, = + .

The formulas for velocity are given in Appendix B, they are

= -&y + x p2 + c 2 1 - a 2

= +hx + y pl + c _ 1 - G 2 '
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where

oo a2.)sinE,
p2 + c2 _2

1/ - 2_

p2 + C2 _2

/_ + hfl _1 - _2 sin 2 ¢ cos¢ '

REMARKS

The computational procedure as it exists in this report was programmed by the author

in single-precision floating-point Fortran for an IBM 7090 computer at the Goddard Space

Flight Center. All machine results were compared with hand calculations and the practi-

cality of the method was confirmed. The procedure is presently being compared with both

single and double precision numerical integration.
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Appendix A

List of Symbols

coefficient in the quartic polynomial F(p). See Appendix B.

canonical constant, one of Izsak's elements, semimajor axis of the orbit.

the earth's equatorial radius.

initial value of the canonical constant a.

coefficient in the quartic polynomial F(p). See Appendix B.

a constant defined by Vinti's expression c 2 = J a 2
2 E "

a canonical constant; in the limit as c 2-0 of Keplerian motion 6 is the

total angular momentum.

angle corresponding to the eccentric anomaly.

the i th value of the eccentric anomaly.

the (i + 1 ) th value of the eccentric anomaly.

canonical constant, one of Izsak's elements, eccentricity of the orbit.

initial value of the canonical constant e.

second eccentricity.

the earth's force function.

quartic polynomial fundamental to Vinti's theory.

representation of a set of four equations to be solved by the Newton-

Raphson method.

the gravitational constant.

a canonical constant; in the limit as c 2-0 of Keplerian motion G is the

z component of the angular momentum, a is positive or negative ac-

cordingly as the motion is direct or retrograde.
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H (ql ' q2 '

i o

J2

K i

Ko

k

the Hamiltonian.

"'" qn; P,, P2, "", Pn; t) the Hamiltonian function (inwhich time appears

explicitly)of a dynamical system of n degrees of freedom with n gen-

eralized coordinates q,, q2, "'" qn and the conjugate momenta

PI' P2' "''' Pn'

a canonical constant; in the limit as c2 _ 0 of Keplerian motion h is the

total energy in the orbit and always negative.

one of Izsak's elements, inclinationof the orbit.

angle of inclination.

initialangle of inclination.

the Jacobian matrix of the Newton-Raphson method.

the Jacobian determinant.

the coefficientof the second-degree Legendre polynomial In the earth's

gravitational potential.

notation used for the coefficientsin Kepler equation.

the value c2 •

P0 2

modulus appearing in ellipticintegral of the firstkind.

modulus appearing in ellipticintegral of the firstkind.

the Lagrangian.

the earth's mass.

"mean anomaly".

the anomalistic mean motion.

a constant used in the generalized Kepler equation, the auxiliary mean

motion.
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P(p}

Pp, P_, P_

Q(_)

Ri

r

r 0

s

Wf

t

t o

_t

u

v

v

v 0

w

x

x, y, z

Xo' YO' Zo
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2

the value %

quartic polynomial fundamental to Vinti's theory.

the generalized momenta.

quartic polynomial fundamental to Vinti's theory.

notation used for the coefficients in the equation for right ascension of the

ascending node.

the geocentric distance of the satellite.

the initial geocentric distance of the satellite.

canonical constant, one of Izsak's elements, sine of the inclination of the

orbit.

final time.

time.

initial time.

time interval of integration.

a canonical constant; in the limit as c 2 - 0 of Keplerian motion - _ is the

time of perigee passage.

the speed of the satellite.

a "true anomaly" analogous to that in Keplerian motion.

the potential which Vinti obtained in oblate spheroidal coordinates.

velocity of the satellite.

initial velocity of the satellite.

"argument of latitude" analogous to that in Keplerian motion.

Hamilton's characteristic function.

a trial vector for the solution of a set of nonlinear equations by the

Newton-Raphson method.

coordinates in the rectangular system.

the initial values of the coordinates in the rectangular system.
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k,_,k

ko, _7o, _o

Zij

c1

al' a2' and a3

7?

7)0 _ sin I = s

K

#

_.,2

p, <7,

,D O , G O , _x 0

Pl

P2

¢

the velocity coordinates in the rectangular system.

the initial value of the velocity coordinates in the rectangular system.

element of the inverse Jacobian matrix.

the right ascension of the satellite.

Vinti's canonical constants denoted by Izsak as f_, _, and 6

respectively.

the declination of the satellite.

the motion of perigee.

an arbitrarily chosen small positive real number (used as a tolerance

in the Newton-Raphson method).

the motion of the node.

a series used in the computation: defined by Equation 14.

the product (_I where G is the gravitational constant and M is the earth's

mass.

a dimensionless parameter of the order 10 -3 in the case of the earth.

coordinates in the oblate spheroidal system.

the initial condition of the coordinates in the oblate spheroidal

system.

the velocity coordinates in the oblate spheroidal system.

the initial conditions of the velocity coordinates in the oblate

spheroidal system.

perigee of the orbit.

apogee of the orbit.

"true anomaly".

"argument of latitude".

a canonical constant; in the limit as c 2 - 0 of Keplerian motion _ is the

right ascension of the ascending node.



60

03

27

a canonical constant, one of Izsak's constants, a constant of integration.

a canonical constant; in the limit as c 2 - 0 of Keplerian motion £ is the

argument of perigee.

the mean argument of perigee.
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AppendixB

Derivation of the Velocities

in Vinti's Accurate Intermediary Orbit

of an Artificial Satellite

Introduction

Izsak (Reference B1) has given an analytic solution for Vinti's intermediary orbit, with

both periodic and secular terms correct through the second order in a certain oblateness

parameter _ = c/a (to be defined later). His solution giving the position vector of the satel-

lite makes extensive use of Jacobian elliptic functions, linear transformations, and map-

pings in the complex plane. Vinti (Reference B2) also has given an analytic solution to this

problem of satellite motion using rapidly converging infinite series instead of Jacobian

elliptic functions. His solution not only gives the periodic terms correct to the second

order, but also the secular terms to an arbitrarily high order.

This appendix presents the derivation of the velocity vector through the use of equa-

tions from both Vinti and Izsak. However, the orbital elements used in this derivation were

introduced by Izsak.

Determination of Velocity

The obIate spheroidal coordinates p, or, and a are defined by

x : ¢_ +_ _oosa, (m)

y = _ + c 2 _ _ _2 sina , (B2)

z = per, (B3)

r = I/p 2 + c2(1 - c_) , (B4)
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wherea is the right ascension of a satellite; r is the geocentric distance; and c is a con-

stant defined by c 2 = J2az 2. The quantity J2 is the coefficient of the second-degree

Legendre polynomial in the earth's gravitational potential

co

r _ Jn Pn(sinS) (B5)

where _ is the declination of the satellite, a z is the equatorial radius of the earth, and

= GM, where G is the gravitational constant and M the mass of the earth.

Differentiating Equations B1-B3 with respect to time we find

p P/3 _& ) (B6):} = -_y + x 2 + c 2 I - o-2. '

§ = +Ex + y 2 + c 2 1-Z_2 (B7)

Squaring and adding Equations B6-B8 we obtain

U 2 = £2 + 9_ + _2

p,+ / + _ )o- + - (Bg)

The expressions for /3, &, and c_ can be obtained from the following equations, which define

the generalized momenta:

aL _ h_ 6- aS }/'(_(o-)- = _ = +--, (Bll)P_" a& 1 - o"2

aL as ^,
P_ = a--_-: h]c£ = _ = G , (B12)

*The caret above h, c, and G (that is, _, c, and _) indicates canonical constants, referred to by Izsak (Reference BI), where
lq"is the total energy in the orbit and always negative, _ is the total angular momentum, and (_ is the z component of the
angular momentum,positive for direct motion.
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,02 ÷ C2CT 2 .02 + C2O -2

hi2 - p2 + c2 ' h_- 1-a _ ' h3_ = (p_ +c2)(i __2) , (B13)

p(p) = 2tip4 + 2_p3 _ (62 _ 2c2}_)p_+ 2c2_p - c2(62 _ 52) , (B14)

QC_,)= -2_ -(_ - 2_)__+ (_ -_) (B15)

s = s{p. or, a) is the action function, and L is the Lagrangian given by L = T -V, where

l{ds_ 2
T = 2_dt/

-,up
V = V(p, _) =

,02 + C20 -2

Here ds/dt iS the speed along the path and V(p, _) is the potential function introduced

by Vinti (Reference B3).

The radicand in Equation B10 can be written in the form

P(p) -- - 2_(p - p,)(p2 - p)(p - p,)(p - p,) ,

where p,, P2, P3, and P4 are the zeros of P(p).

in the form

(BI6)

Izsak (Reference BI) has given the zeros

Pl = a(l - e), P2 = a(l + e}, P3 = a(K - iX), P4 = a(K + iX). (BIT)

The orbital elements a and e are the semimajor axis and the eccentricity of the orbit, re-

spectively, even though it is not an exact ellipse. They are defined by the first two of Equa-

tions B17. The quantity i is the imaginary unit (C-z'S).

If we substitute P3 and P4 from Equations B17 into Equation B16:

The quantities K and K2 +k2 are given in Reference B1 in terms of a, e, and s = sin I,

where I is the inclination of the orbit:

_ 75(1 - ,2)(I - e 2 - 7% 2) __ (BIB)
K (1 - e 2 - .y2)(1 - e 2 - _2s2) + 4_2s 2 '
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K2 + _2 = 72S2 [(1 -'e 2 - y 2) (1 - e 2 - 72s 2) + 4y 2] (B19)

where y = c/a, a small dimensionless parameter.

The quartic Q{_I contains only even powers of _ and can be written

where the four real zeros of Oil) = 0are±_land±c%: 0<_% < 1, cr2 >> I. Aspointed

out by Izsak (Reference B1), _ oscillates between the values -_ and +_1- Therefore, _

is a convenient parameter to use as the sine of the inclination I o[ the orbit.

When we introduce Izsak's formulas,

Pl = a(1 - e}, P2 : a[1 + e)

p : a(1 - ecosE) ,

_1 = s = sin I

= s sin¢ ,

_i 2 s 2
_ - L2

_ _2 2

s 2

c's 2 i_ : a #(1 - e 2)(K 2 + L2)

where E is the eccentric anomaly and ¢ is the argument of latitude, and several of the afore-

mentioned relations into Equations B10 and Bll we obtain

C 2r_
-- IP, /92+ ca ae ¢p2 _ 2aKp + a2(K2 + X') sine (]320)

P_ - 1_ _a c }/1- e2 _K2 + L2 ¢1- /2sin2¢ cos¢. (B21)
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The coefficients and the roots of the quartic equation P(p) -- 0 can be related to those

of O(_) = 0 in the following manner:

22(I + K) -- -_--- (B22)

_2 - 2c2_

2_

= c s s + , (B23)

2a 3 [(1 -ea)K + (K s + >Q)] : -c s #
h

(B24)

a4(1 _ e s)(Ks + _,s) .:- -C 2

2f,

S s

_- C4S 2 --

ls
(B25)

Consider the following expression for Zs given by Izsak (Reference B1)

I s _ _2s2 F( 1 _ e 2 _ _¢s)(1 - e s - :y2sS) + 47Ss s

1 - e 2 L (1 - e s - "7s) (1 - e s - T2s 2) + 472
(B26)

If we substitute c/a for _ and solve for s2//l 2 we obtain

s s _ aS(1 - e s) f[a2_, e2) - c s] [a2(1 - e s) - c2s s] + 4aSc 2

l' c s L[a2(1 - _) :--C _] [22(1 - e 2) - c2s s] + 4aScSsSj "
(B27)

Next we introduce a parameter p -- a (1 - eS), the semilatus rectum, which Vinti (Refer-

ence B2) uses in his oblateness parameter k = cS//pL It is clear that Equation B27 can be

written

s s a=__ppF (ap- cs)(ap - c2sS) + 4a2c s

l_ = cs L(ap- c s)(ap -cSs s) + 4a'cSsSJ (B28)

From Equation 4.13 of Reference B2:

(.p _ cs)(ap -
B : cs :

+ 4aSc 2
)

+ 4a2c2_2
(B29)
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where no = s = sin I, we see that c+s+/t2 = Bap. Solving for C2S2/I 2 from Equation B23 and

inserting it into Equation B25, we obtain

52 : (1 - + 2¢%2) (B30)

From Equation B23,

_ a2 s2
- c2 (1 - s2) + c2- (B31)

21_ l 2

Multiplying Equation B28 by c 2 to obtain c2s2//2 and inserting it into Equation B31 we find

_62 r__p- c 2) (ap- c2s 2) + 4a2c 2 -]

: - c 2 (1 - s 2) + ap L(aP- - c2 ) (ap - c2s 2) + 4a2c2s2J " (B32)

Vinti has given an identical result in Equation 4.15 of Reference B2:

r(ap- c2)(ap- c2vo2) + 4a2c2 _ (B33)
2a I _ aoP o

where a 0 is a semimajor axis, Po the semilatus rectum. Since t_ : %, _ : 62, and 5 : 63,

we can easily rewrite Equation B30, using Equation B33, to obtain the final result for 5,

V/< c2s2 15 : 6 1 --- (1- s2). (B34)
aoPo/

Equation B34 is equivalent to Vinti's Equation 4.15a of Reference B2,

1

c 27?°21 _a 3 : a 2 1 -- cos I.

a op o /

Using Equation B34 we obtain, as in Equation Bl2,

P_ = 5. (B35)

Itshould be noted that the following formulas relate K and K2 + _2 to Vinti'sA andB:

.2(K2 +),2) : B , (B36)

- 2aK : A, (B37)
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35

-2._(i - ,:)(.. - _o_)
A --

(ap - c 2) (ap - c277:) + 4a2c2w2

= C2_:(ap-c2)(ap-c2v)02) +4a2c2772

(B38)

From Vinti's Equation 4.16 (Reference B2) we have

c2 (a, - c2)(a, - c%_) + 4a2c2_:7
72-2 - ap (ap - c 2)(ap - c2v02) +-4a2c_ "j = c'v02(Bap}-1 , (B39)

where v2 = or2" Using Equations B36-B38, together with the values for P(p} and Q{_), we

find that in Vinti's notation the quartics P(p) and Q(a) can be factored in the form

Fop): -2%(.2-p)(p-p,)(p2+Ap+B) , (B4o)

G(_) : -2a, c 2(v0 _ - V2) (722 - V2). (B41)

where V -- a.

The following equations for _, _, and 5 are easily obtained from Equations B10-B13,

B20, B21, and B35:

/_ p2 + c2G2 ae )rp2 _ 2aKp + a2(K 2 + _.2) sine , (B42)

)_-- 2fi a 2

& p2 + c2c_2 c _ _ + k2 }/1 - t 2sin2¢ cos¢, (B43)

5
a : (p2+c2)(___2) (s44)

If we write the equations for _, b, and _ in Vinti's notation, we obtain

_ /--: 2_ 1
/9 p2 + C2T]2 ae l/p2 +Ap + B sinE, (B45)
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¢I - q2sin2_ cos ¢, (B46)

a 3

(B47)

where q = Vo/V2"

Now, substituting Equations B42-B44 into Equations B6-B8 we obtain the following:

cr Y'I -e 2

I -- 0 -2

a y,-_-K2+ _2
C fl - t _sin2¢ cosCJ,(B48)

+_x ya _C_
= 4- ......

(p2 + c 2)(1 - 0-2) ;0 2 + C2O. 2 '0 2 + c2 -- sinE

0- ¢-i--:_
1 -- 0 -2

a F_-_K2+ X2 ¢1 - Z2sin2_bcos ,(B49)
C

p _ )fK2 + _2 ¢1 - t 2 sin2@ cos¢

-]

+0-e }/p2 _ 2a_p + a2(K 2 + X2) sinEJ. (B50)

The velocity components given above are now being used in an orbit determination

program formulated by the author.
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